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Pseudo Sparse Multiplication for Optimal-Ate Pairing
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SUMMARY Scalar multiplication over higher degree rational point
groups is often regarded as the bottleneck for faster pairing based cryp-
tography. This paper has presented a skew Frobenius mapping technique
in the sub-field isomorphic sextic twisted curve of Kachisa-Schaefer-Scott
(KSS) pairing friendly curve of embedding degree 18 in the context of Ate
based pairing. Utilizing the skew Frobenius map along with multi-scalar
multiplication procedure, an e�cient scalar multiplication method for KSS
curve is proposed in the paper. In addition to the theoretic proposal, this
paper has also presented a comparative simulation of the proposed approach
with plain binary method, sliding window method and non-adjacent form
(NAF) for scalar multiplication. The simulation shows that the proposed
method is about 60 times faster than plain implementation of other compared
methods.
key words: scalar multiplication, skew Frobenius mapping, KSS curve

1. Introduction

Pairing based cryptography has attracted many researchers
since Sakai et al. [1] and Joux et al. [2] independently pro-
posed a cryptosystem based on elliptic curve pairing. This
has encouraged to invent several innovative pairing based
cryptographic applications such as broadcast encryption [3]
and group signature authentication [4], that has increased
the popularity of pairing based cryptographic research. But
using pairing based cryptosytem in industrial state is still
restricted by its expensive operational cost with respect to
time and computational resources in practical case. In or-
der to make it practical, several pairing techniques such as
Ate [5], Optimal-ate [6], twisted Ate [7], �-Ate [8] and sub-

field twisted Ate [9] pairings have gained much attention
since they have achieved quite e�cient pairing calculation
in certain pairing friendly curve. Researchers still contin-
ues on finding e�cient way to implement pairing to make it
practical enough for industrial standardization. In such con-
sequences, this paper focuses on a peripheral technique of
Ate-based pairings that is scalar multiplication defined over
Kachisa-Schaefer-Scott (KSS) curve [10] of embedding de-
gree 18.

In general, pairing is a bilinear map of two rational point
groups G1 and G2 to a multiplicative group G3 [11]. The
typical notation of pairing is G1 ⇥ G2 ! G3. In Ate-based
pairing, G1, G2 and G3 are defined as:
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G1 = E(Fpk )[r] \ Ker(⇡p � [1]),
G2 = E(Fpk )[r] \ Ker(⇡p � [p]),
G3 = F

⇤
pk /(F⇤pk )r,

↵ : G1 ⇥ G2 ! G3,

where ↵ denotes Ate pairing. Pairings are often defined
over certain extension field Fpk , where p is the prime num-
ber, also know as characteristics and k is the minimum ex-
tension degree for pairing also called embedding degree.
The set of rational points E(Fpk ) are defined over a certain
pairing friendly curve of embedded extension field of de-
gree k. This paper has considered Kachisa-Schaefer-Scott
(KSS) [10] pairing friendly curves of emebdding degree
k = 18 described in [12].

Scalar multiplication is often considered to be one of
the most time consuming operation in cryptographic scene.
E�cient scalar multiplication is one of the important factors
for making the pairing practical over KSS curve. There are
several works [13] [14] on e�ciently computing scalar multi-
plication defined over Barreto-Naehrig [15] curve along with
e�cient extension field arithmetic [16]. This paper focuses
on e�ciently performing scalar multiplication on rational
points defined over rational point groupG2 by scalar s, since
scalar multiplication is required repeatedly in cryptographic
calculation. However in asymmetric pairing such as Ate-
based pairing, scalar multiplication of G2 rational points is
important as no mapping function is explicitly given between
G1 to G2. By the way, as shown in the definition, G1 is a
set of rational points defined over prime field and there are
several researches [14] for e�cient scalar multiplication in
G1. The common approach to accelerate scalar multiplica-
tion are log-step algorithm such as binary and non-adjacent
form (NAF) methods, but more e�cient approach is to use
Frobenius mapping in the case ofG2 that is defined over Fpk .
Moreover when sextic twist of the pairing friendly curve ex-
ists, then we apply skew Frobenius map on the isomorphic
sextic-twisted sub-field rational points. Such technique will
reduce the computational cost in a great extent. In this paper
we have exploited the sextic twisted property of KSS curve
and utilized skew Frobenius map to reduce the computational
time of scalar multiplication on G2 rational point. Utilizing
the relation z ⌘ �3p + p

4 mod r ,† derived by Aranha et
al, [17] and the properties ofG2 rational point, the scalar can
be expressed as z-adic representation. Together with skew

†
z is the mother parameter of KSS curve and z is about six

times smaller than the size of order r .
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Frobenius mapping and z-adic representation the scalar mul-
tiplication can be further accelerated. We have utilized this
relation to construct z-adic representation of scalar s which is
introduced in section 3. In addition with Frobenius mapping
and z-adic representation of s, we applied the multi-scalar
multiplication technique to compute elliptic curve addition
in parallel in the proposed scalar multiplication. We have
compared our proposed method with three other well stud-
ied methods named binary method, sliding-window method
and non-adjacent form method. The comparison shows that
our proposed method is about 60 times faster than the plain
implementations of above mentioned methods in execution
time. The comparison also reveals that the proposed method
requires more than 5 times less elliptic curve doubling than
any of the compared methods.

The rest of the paper is organized as follows. The fun-
damentals of elliptic curve arithmetic, scalar multiplication
along with KSS curve over Fp18 extension field and sextic

twist of KSS curve are described in section 2. In section 3,
this paper describes the proposal in details. The experimen-
tal result is presented in section 4 which shows that our scalar
multiplication technique on G2 rational points of KSS curve
can be accelerated by 60 times than plain implementation of
binary, sliding-window and NAF methods. Finally section 5
draws the conclusion with some outline how this work can
be enhanced more as a future work.

Throughout this paper, p and k denote characteristic
and embedding extension degree, respectively. Fpk denotes
k-th extension field over prime field Fp and F⇤pk denotes the
multiplicative group in Fpk .

The process of getting z-adic representation and using
it for scalar multiplication over KSS curve is presented in
17th World Conference on Information Security Applica-
tions (WISA 2016), Jeju, Korea. It will be published in the
conference proceedings from Springer LNCS. For the conve-
nience of describing the total procedure, here we will discus
z-adic representation in section 3.

2. Preliminaries

In this section we will go through the fundamental back-
ground of elliptic curves and its operations. We will briefly
review elliptic curve scalar multiplication. After that pairing
friendly curve of embedding degree k = 18, i.e., KSS curve
and its properties will be introduced briefly.

2.1 Elliptic curve

An elliptic curve [18] defined over Fp is generally repre-
sented by a�ne coordinates [11] as follows;

E/Fp : y2 = x

3 + ax + b, (1)

where 4a

3 + 27b

2 , 0 and a, b 2 Fp . A pair of coordinates
x and y that satisfy Eq. (1) are known as rational points on
the curve.

2.1.1 Point addition.

Let E(Fp) be the set of all rational points on the curve E

including the point at infinity O. #E(Fp) denotes the order
of E(Fp). Let us consider two rational points using a�ne
coordinates as P1 = (x1, y1), P2 = (x2, y2), and their addition
R = P1+P2, where R = (x3, y3) and P1, P2, R 2 E(Fp). Then
the x and y coordinates of R are calculated as follows:

x3 = �2 � x1 � x2, (2a)
y3 = (x1 � x3)� � y1, (2b)

where � is given as follows:

� =

( y2�y1
x2�x1

; P1 , P2,
3x2

1+a

2y1
; P1 = P2,

(2c)

� is the tangent at the point on the curve and O is the additive
unity in E(Fp). If P1 , P2 then P1 + P2 is called elliptic
curve addition (ECA). If P1 = P2 then P1+P2 = 2P1, which
is known as elliptic curve doubling (ECD).

2.1.2 Scalar multiplication

Let scalar s is 0  s < r , where r is the order of the target
rational point group. Scalar multiplication of rational points
P1, denoted as [s]P1 is calculated by (s � 1)-times additions
of P1 as,

[s]P1 =
s�1’
i=0

P1, 0  s < r, (3)

When s = r , then [r]P1 = O where r is the order of the
curve. Let [s]P1 = P2, and value of s is not obtained, then
the solving s from P1 and P2 is known as elliptic curve
discrete logarithm problem (ECDLP). The di�culty level of
solving ECDLP defines the security strength of elliptic curve
cryptography.

2.2 KSS curve

In [10], Kachisa, Schaefer, and Scott proposed a family of
non super-singular Brezing-Weng pairing friendly elliptic
curves using elements in the cyclotomic field. In what fol-
lows this paper considers the KSS curve of embedding degree
k = 18 since it holds sextic twist. The equation of KSS curve
defined over Fp18 is given as follows:

E : Y

2 = X

3 + b, (b 2 Fp), (4)

where b , 0 and X,Y 2 Fp18 . Its characteristic p, Frobenius
trace t and order r are given systematically by using an integer
variable z as follows:

p(z) = (z8 + 5z

7 + 7z

6 + 37z

5 + 188z

4 + 259z

3
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+343z

2 + 1763z + 2401)/21, (5a)
r(z) = (z6 + 37z

3 + 343)/343, (5b)
t(z) = (z4 + 16z + 7)/7, (5c)

where z is such that z ⌘ 14 (mod 42) and the ⇢ value is
⇢ = (log2 p/log2 r) ⇡ 1.33.

In some previous work of Aranha et al. [17] and Scott et
al. [19] has mentioned that the size of the characteristics p to
be 508 to 511-bit with order r of 384-bit for 192-bit security
level. Therefore this paper used parameter settings according
to the suggestion of [17] for 192 bit security on KSS curve
in the simulation implementation. In the recent work, Kim
et al. [20] has suggested to update the key sizes in pairing-
based cryptography due to the development of new discrete
logarithm problem over finite field. The parameter settings
used in this paper doesn’t completely end up at the 192 bit
security level according to [20]. However the parameter
settings used in this paper in order to show the resemblance
of the proposal with the experimental result.

2.3 Fp18 extension field arithmetic

Pairing based cryptography requires to perform arithmetic
operation in extension fields of degree k � 6 [11]. In the
previous works of Bailey et al. [21] explained optimal ex-
tension field by towering by using irreducible binomials. In
this paper extension field Fp18 is represented as a tower of
sub field to improve arithmetic operations.

Let (p�1) is divisible by 3 and c is a quadratic and cubic
non residue in Fp . In KSS curve [10], where k = 18, Fp18

is constructed with irreducible binomials by the following
towering scheme.

8>>><
>>>:

Fp3 = Fp [i]/(i3 � c),where c = 2 is the best choice,
Fp6 = Fp3 [v]/(v2 � i),
Fp18 = Fp6 [✓]/(✓3 � v).

where the base extension field is Fp3 for the sextic twist of
KSS curve.

2.3.1 Frobenius mapping of rational point in E(Fp18 ).

Let (x, y) be certain rational point in E(Fp18 ). Frobenius map
⇡p : (x, y) 7! (xp, yp) is the p-th power of the rational point
defined over Fp18 . Sakemi et al. [14] showed an e�cient
scalar multiplication by applying skew Frobenius mapping
in the context of Ate-based pairing in BN curve of embedding
degree k = 12. In this paper we have utilized skew Frobenius
mapping technique for e�cient scalar multiplication for the
KSS curve.

2.4 Sextic twist of KSS curve

Let the embedding degree k = 6e, where e is positive integer,
sextic twist is given as follows:

E : y2 = x

3 + b, b 2 Fp, (6)

E

0
6 : y2 = x

3 + bu

�1, (7)

where u is a quadratic and cubic non residue in E(Fpe ) and
3|(pe � 1). Isomorphism between E

0
6(Fpe ) and E(Fp6e ), is

given as follows:

 6 :

(
E

0
6(Fpe ) ! E(Fp6e ),

(x, y) 7! (xu

1/2, yu1/2). (8)

In context of Ate-based pairing for KSS curve of embedding
degree 18, sextic twist is considered to be the most e�cient.

3. Improved Scalar Multiplication forG2 rational point

This section will introduce the proposal for e�cient scalar
multiplication of G2 rational points defined over KSS curve
of embedding degree k = 18 in context of Ate-based pairing.
An overview the proposed method is given next before diving
into the detailed procedure.

3.0.1 Overview of the proposal

Figure 1 shows an overview of overall process of proposed
scalar multiplication. Rational point groupsG1,G2 and mul-
tiplicative group G3 groups will be defined at the beginning.
Then a rational point Q 2 G2 ⇢ E(Fp18 ) will be calculated.
Q has a special vector representation with 18 Fp elements
for each coordinates. A random scalar s will be considered
for scalar multiplication of [s]Q which is denoted as input in
Figure 1. After that we will consider an isomorphic map of
rational point Q 2 G2 ⇢ E(Fp18 ) to its sextic twisted rational
point Q

0 2 G0
2 ⇢ E

0(Fp3 ). At the same time we will obtain
the z-adic representation of the scalar s. Next the some ra-
tional points defined over E

0(Fp3 ) will be pre-computed by
applying the skew Frobenius mapping. After that a multi-
scalar multiplication technique will be applied to calculate
the scalar multiplication in parallel. The result of this scalar
multiplication will be defined over Fp3 . Finally the result of
the multi-scalar multiplication will be re-mapped to rational
point in E(Fp18 ) to get the final result.

3.1 G1, G2 and G3 groups

In the context of pairing-based cryptography, especially on
KSS curve, three groups G1,G2, and G3 are considered.
From [22], we define G1, G2 and G3 as follows:

G1 = E(Fp18 )[r] \ Ker(⇡p � [1]),
G2 = E(Fp18 )[r] \ Ker(⇡p � [p]),
G3 = F

⇤
p18/(F⇤p18 )r,

↵ : G1 ⇥ G2 ! G3, (9)

where ↵ denotes Ate pairing. In the case of KSS curve,
G1,G2 are rational point groups and G3 is the multiplicative
group in Fp18 . They have the same order r .

In context of KSS curve, let us consider a rational point
Q 2 G2 ⇢ E(Fp18 ) where Q satisfies the following relations,
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Fig. 1 Overview of the proposed scalar multiplication.

⇥
p + 1 � t

⇤
Q = O,⇥

t � 1
⇤
Q =

⇥
p

⇤
Q. (10)

[⇡p � p]Q = O,
⇡p(Q) = [p]Q. (11)

where [t � 1]Q = ⇡p(Q), by substituting [p]Q in Eq. (10).

3.2 Isomorphic mapping between Q and Q

0

Let us consider E is the KSS curve in base field Fp3 and E

0
is sextic twist of E given as follows:

E : y2 = x

3 + b, (12)
E

0 : y2 = x

3 + bi, (13)

where b 2 Fp; x, y, i 2 Fp3 and basis element i is the
quadratic and cubic non residue in Fp3 .

Rational point Q 2 G2 ⇢ E(Fp18 ) has a special vector
representation with 18 Fp elements for each xQ and yQ
coordinates. Figure 2 shows the structure of the coe�cients
of Q 2 Fp18 and its sextic twisted isomorphic rational point
Q

0 2 Fp3 in KSS curve. Among 18 elements, there are
3 continuous nonzero Fp elements which belongs to a Fp3

element. The other coe�cients are zero. In this paper,
considering parameter settings given in Table 2 of section
4; Q is given as Q = (Av✓, Bv), showed in Figure 2, where
A, B 2 Fp3 and v and ✓ are the basis elements of Fp6 and
Fp18 respectively.

Let us consider the sextic twisted isomorphic sub-field
rational point of Q as Q

0 2 G0
2 ⇢ E

0(Fp3 ) and x

0 and y0 as
the coordinates of Q

0.

3.2.1 Mapping Q = (Av✓, Bv) to the rational point Q

0 =
(x 0, y0)

Let’s multiply ✓�6 with both side of Eq. (13), where i = ✓6

and v = ✓3.

E

0 :
⇣ y
✓3

⌘2
=
⇣

x

✓2

⌘3
+ b. (14)

Fig. 2 Q 2 Fp18 and its sextic twisted isomorphic rational point Q0 2
Fp3 structure in KSS curve.

Now ✓�2 and ✓�3 of Eq. (14) can be represented as follows:

✓�2 = i

�1✓4, (15a)
✓�3 = i

�1✓3. (15b)

Let us represent Q = (Av✓, Bv) as follows:

Q = (A✓4, B✓3), where v = ✓3. (16)

From Eq. (15a) and Eq. (15b) ✓4 = i✓�2 and ✓3 = i✓�3 is
substituted in Eq. (16) as follows:

Q = (Ai✓�2, Bi✓�3), (17)

where Ai = x

0 and Bi = y0 are the coordinates of Q

0 =
(x 0, y0) 2 Fp3 . From the structure of Fp18 , given in 2.3, this
mapping has required no expensive arithmetic operation.
Multiplication by the basis element i in Fp3 can be done by
1 bit wise left shifting since c = 2 is considered for towering
in 2.3.
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3.3 z-adic representation of scalar s

In context of KSS curve, properties of Q will be obtained to
define the Eq. (11) relation. Next, a random scalar s will be
considered for scalar multiplication of [s]Q. Then (t � 1)-
adic representation of s will be considered as Figure 3. Here
s will be divided into two smaller coe�cients SH , SL where
SL denotes lower bits of s, will be nearly equal to the size
of (t � 1). On the other hand the higher order bits SH will
be the half of the size of (t � 1). Next, z-adic representation
of SH and SL will be considered. Figure 4, shows the z-adic
representation from where we find that scalar s is divided
into 6 coe�cients of z, where the size of z is about 1/4 of
that of (t � 1) according to Eq. (5c).

Figure 3 shows (t � 1)-adic representation of scalar s.

Fig. 3 (t � 1) -adic representation of scalar s.

Figure 4 shows the z-adic representation of scalar s. In

Fig. 4 z-adic and (t � 1)-adic representation of scalar s.

the previous work on optimal-ate pairing, Aranha et al. [17]
derived a relation from the parameter setting of KSS curve
as follows:

z + 3p � p

4 ⌘ 0 mod r, (18)

where z is the mother parameter of KSS curve which is about
six times smaller than order r .

Since Q is mapped to its ismorphic sextic twisted ratio-
nal point Q

0, therefore we can consider scalar multiplication
[s]Q0 where 0  s < r . [s]Q0 will be calculated in Fp3 and
eventually the result will be mapped to Fp18 to get the final
result. From Eq. (5b) we know r is the order of KSS curve

where [r]Q = O. Here, the bit size of s is nearly equal to
r . In KSS curve t is 4/6 times of r . Therefore, let us first
consider (t � 1)-adic representation of s as follows:

s = SH (t � 1) + SL, (19)

where s will be separated into two coe�cients SH and SL .
SL will be nearly equal to the size of (t � 1) and SH will be
about half of (t � 1). In what follows, z-adic representation
of SH and SL is given as:

SH = s5 + s4,

SL = s3z

3 + s2z

2 + s1z + s0.

Finally s can be represented as 6 coe�cients as follows:

s =

3’
i=0

siz
i + (s4 + s5z)(t � 1),

s = (s0 + s1z) + (s2 + s3z)z2 + (s4 + s5z)(t � 1). (20)

3.3.1 Reducing number of Elliptic Curve Doubling (ECD)
in [s]Q0.

Let us consider a scalar multiplication of Q

0 2 G0
2 in Eq.

(20) as follows:

[s]Q0 = (s0+s1z)Q0+(s2+s3z)z2
Q

0+(s4+s5z)(t�1)Q0.
(21)

In what follows, z

2
Q

0, (t � 1)Q0 of Eq. (21) is denoted as
Q

0
1 and Q

0
2 respectively. From Eq. (18) and Eq. (11) we can

derive the Q

0
1 as follows:

Q

0
1 = z

2
Q

0,
= (9p

2 � 6p

5 + p

8)Q0,
= 9⇡02(Q0) � 6⇡05(Q0) + ⇡08(Q0). (22)

where ⇡0(Q0) is called the skew Frobenius mapping of
rational point Q

0 2 E

0(Fp3 ). Eq. (22) is simplified as follows
by utilizing the properties of cyclotomic polynomial.

Q

0
1 = 8⇡02(Q0) � 5⇡05(Q0),
= ⇡02(8Q

0) � ⇡05(5Q

0). (23)

And from the Eq. (10) and Eq. (11), Q

0
2 is derived as,

Q

0
2 = ⇡

0(Q0). (24)

Substituting Eq. (23) and Eq. (24) in Eq. (21), the following
relation is obtained.

s[Q0] = (s0+ s1z)Q0+ (s2+ s3z)Q0
1+ (s4+ s5z)Q0

2. (25)

Using z ⌘ �3p + p

4 (mod r) from Eq. (18), z(Q0) can be
pre-computed as follows:

z(Q0) = ⇡0(�3Q

0) + ⇡04(Q0). (26)
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Table 1 13 pre-computed values of rational points

Pre-computed rational points Skew Frobenius mapped rational points

z(Q0)
Q0

1 z(Q0
1)

Q0
2 z(Q0

2)
Q0

1 +Q
0
2 z(Q0

1) + z(Q0
2)

Q0 +Q0
2 z(Q0) + z(Q0

2)
Q0 +Q0

1 z(Q0) + z(Q0
1)

Q0 +Q0
1 +Q

0
2 z(Q0) + z(Q0

1) + z(Q0
2)

Table 1 shows all the pre-computed values of ratio-
nal points defined over Fp3 for the proposed method. Pre-
computed rational points are denoted inside angular bracket
such as < Q

0 +Q

0
2 > in this paper.

3.4 Skew Frobenius map

Similar to Frobenius mapping, skew Frobenius map is the
p-th power over the sextic twisted isomorphic rational points
such as Q

0 = (x 0, y0) as follows:

⇡0 : (x 0, y0) 7! (x 0p, y0p) (27)

The detailed procedure to obtain the skew Frobenius map of
Q

0 = (x 0, y0) 2 G0
2 ⇢ E

0(Fp3 ) is given bellow:

⇡0(x 0) = (x 0)p(i)1�p(v)p�1(✓)p�1

= (x 0)p(i)1�p(✓4)p�1

= (x 0)p(i�1)pi(✓p�1)4
= (x 0)p(i�1)pi(i p�1

6 )4 where ✓6 = i

= (x 0)p(i�1)pi(i p�1
6 �1

i)4

= (x 0)p(i�1)pi(i3
p�7

6
3 )4i

4

= (x 0)p(i�1)pi(2 p�7
18 )42i where i

3 = 2

= (x 0)p(i�1)pi(2 2p�14
9 +1)i

= (x 0)p(i�1)pi(2 2p�5
9 )i, (28a)

⇡0(y0) = (y0)p(i)1�p(v)p�1

= (y0)p(i�1)pi(v6 p�1
6 )

= (y0)p(i�1)pi(i3 p�1
6 )

= (y0)p(i�1)pi2
p�1

6 . (28b)

Here (i�1)pi, (2 2p�5
9 )i and 2

p�1
6 can be pre-computed.

3.5 Multi-scalar multiplication

Applying the the multi-scalar multiplication technique in Eq.
(25) we can e�ciently calculate the scalar multiplication in
Fp3 . Figure 5 shows an example of this multiplication. Sup-
pose in an arbitrary index, from left to right, bit pattern of s1,

s3, s5 is 101 and at the same index s0, s2, s4 is 111. Therefore
we apply the pre-computed points < z(Q0) + z(Q0

2) > and
< Q

0+Q

0
1+Q

0
2 > as ECA in parallel. Then we perform ECD

and move to the right next bit index to repeat the process until
maximum length z-adic coe�cient becomes zero.

Fig. 5 Multi-scalar multiplication of s with Frobenius mapping.

As shown in Figure 5, during scalar multiplication, we
are considering 3 pair of coe�cients of z-adic representation
as shown in Eq. (20). If we consider 6-coe�cients for
parallelization, it will require 26 ⇥ 2 pre-computed points.
The chance of appearing each pre-computed point in the
calculation will be only once that will cause redundancy.

3.5.1 Re-mapping rational points from E

0(Fp3 ) to E(Fp18 )

After the multi-scalar multiplication, we need to remap the
result to Fp18 . For example let us consider re-mapping of
Q

0 = (x 0, y0) 2 E

0(Fp3 ) to Q = (Av✓, Bv) 2 E(Fp18 ). From
Eq. (15a), Eq. (15b) and Eq. (14) it can be obtained as
follows:

xi

�1✓4 = Av✓,

yi�1✓3 = Bv,

which resembles that Q = (Av✓, Bv). Therefore it means
that multiplying i

�1 with the Q

0 coordinates and placing
the resulted coe�cients in the corresponding position of the
coe�cients in Q, will map Q

0 to Q. This mapping costs one
Fp3 inversion of i which can be pre-computed and one Fp
multiplication.

4. Simulation result evaluation

This section shows experimental result with the calculation
cost. In the experiment we have compared the proposed
method with three well studied method of scalar multipli-
cation named binary method, sliding-window method and
non-adjacent form (NAF) method. The mother parameter z

is selected according to the suggestion of Scott et al. [19] to
obtain p = 508 ⇡ 511-bit and r = 376 ⇡ 384-bit to simu-
late in 192-bit security level. Table 2 shows the parameter
settings considered for the simulation.
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Table 2 Parameter settings used in the experiment

Defined KSS curve y2 = x3 + 11

Mother parameter z 65-bit

Characteristics p(z) 511-bit

Order r(z) 376-bit

Frobenius trace t(z) 255-bit

Persuadable security level 192-bit

Table 3 Computational Environment

PC iPhone6s

CPU * 2.7 GHz Intel Core i5 Apple A9 Dual-core 1.84 GHz

Memory 16 GB 2 GB

OS Mac OS X 10.11.6 iOS 10.0

Compiler gcc 4.2.1 gcc 4.2.1

Programming Language C Objective-C, C

Library GMP 6.1.0 GMP 6.1.0

*Only single core is used from two cores.

Table 3 shows the environment, used to experiment and
evaluate the proposed method.

In the experiment 100 random scalar numbers of size
less than order r ( 378-bit) is generated. 13 ECA counted for
pre-computed rational points is taken into account while the
average is calculated for the proposed method. Window size
of 4-bit is considered for sliding-window method. Therefore
14 pre-computed ECA is required. In addition, average
execution time of the proposed method and the three other
methods is also compared along with the operation count.

In what follows, “With isomorphic mapping” refers that
skew Frobenius mapping technique is applied for Binary,
Sliding-window and NAF methods. Therefore the scalar
multiplication is calculated in Fp3 extension field. And for
Proposed method it is skew Frobenius mapping with multi-
scalar multiplication. On the other hand “Without isomor-

phic mapping” denotes that Frobenius map is not applied for
any of the methods. In this case, all the scalar multiplication
is calculated in Fp18 extension field.

Table 4 Comparison of average number of ECA and ECD

Count of average number of ECA, ECD

Methods #ECA #ECD

Binary 186 375

Sliding-window 102 376

NAF 127 377

Proposed 123 64

In Table 4 the operations of the Proposed method are
counted in Fp3 . On the other hand for Binary, Sliding-
window and NAF method, the operations are counted in
Fp18 . The table clearly shows that in the Proposed method

requires about 6 times less ECD than any other methods.
The number of ECA is also reduced in the Proposed method
by about 30% than binary method and almost same number
of ECA of NAF.

Table 5 Comparison of execution time in [ms] for scalar multiplication

Execution time in [ms]

With isomorphic mapping Without isomorphic mapping

Methods PC iPhone6s PC iPhone6s

Binary 5.4 ⇥ 101 8.4 ⇥ 101 1.2 ⇥ 103 1.8 ⇥ 103

Sliding-window 4.8 ⇥ 101 7.5 ⇥ 101 1.0 ⇥ 103 1.6 ⇥ 103

NAF 5.3 ⇥ 101 7.7 ⇥ 101 1.6 ⇥ 103 1.7 ⇥ 103

Proposed 1.6 ⇥ 101 2.4 ⇥ 101 - -

Multi-scalar (only) - - 3.4 ⇥ 102 5.5 ⇥ 102

Analyzing Table 5, we can find that when isomorphic
mapping and skew Frobenius mapping is not adapted for
Binary, Sliding-window and NAF, then the scalar multipli-
cation of proposed method is more than 60 times faster than
other methods. However when isomorphic mapping is ap-
plied for the other methods then our proposed technique is
more than 3 times faster. Another important comparison
shows that when only multi-scalar multiplication is applied
then our proposed methods is about 20 times faster. In ev-
ery scenario our proposed method is faster than the other
commonly used approaches.

The main focus of this experiment is to evaluate the
acceleration ratio of scalar multiplication by applying the
proposed approach on G2 rational point group of KSS curve
of embedding degree 18. The experiment does not focus
on e�ciently implementing scalar multiplication for certain
environment.

5. Conclusion and future work

In this paper we have proposed an e�cient method to cal-
culate elliptic curve scalar multiplication using skew Frobe-
nius mapping over KSS curve in context of pairing based
cryptography. The simulation result shows that multi-scalar
multiplication after applying skew Frobenius mapping in G0

2
can accelerate the scalar multiplication in G2 ⇢ E(Fp18 ) by
more than 60 times than scalar multiplication of G2 rational
point directly in Fp18 . In the previous work of Sakemi et
al. [14] has proposed skew Frobenius map for G1 rational
point defined over BN curve. As a future work we would
like to apply such approach onG1 rational point defined over
KSS curve. Together with the proposed method, the skew
Frobenius mapping of G1 will remarkably accelerate scalar
multiplication over KSS curve in the context of pairing based
cryptography.
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